
Calculating Timeouts for Minimum Cost RPC

Peter B. Danzig

Computer Science Division
University of California, Berkeley

Berkeley, California 94 720

Abstract. We derive expressions for remote pro-

cedure call (RPC) retransmission timeout values that

minimize the weighted sum of total elapsed time, operat-

ing system kernel costs, and network charges. Currently

we select RPC retransmission timeouts to minimize net-

work utilization, an operating point chosen with our net-

works' low bandwidth in mind. When public utilities pro-

vided digital service becomes popular, we will routinely

make requests to servers across town and across nation

and we will pay for each message that we send. These

networks may offer various grades of service, each with

different loss and delay characteristics. In such an

environment, choosing the retransmission timeout and

grade of service that minimize our costs is not obvious.

Our approach, illustrated with a simple RPC algorithm,

can be applied to other remote invocation mechanisms.

We can incorporate the expression for the optimal

retransmission timeout that our approach generates into

the communication's software of distributed operating

systems.

This work has been supported in part by the Defense Advanced
Research Projects Agency (DoD), ARPA Order No. 4871, monitored by
the Naval Electronic Systems ·command under Contract No. N00039-
84-C-0089 and by an American Electronics Association Faculty
Development Fellowship. The views and conclusions contained in this
document are those of the author and should not be interpreted as
representing official policies, either expressed or implied, of any of the
sponsoring organizations or of the U.S. GovemmenL

1. Introduction

Consider a remote procedure call (RPC) between a

requestor site and a server site [1]. Since both the net

work and the server may lose messages, sometimes the

requestor must retransmit its RPC request one or more

times. Similarly, since both the network and the requestor

may lose messages, sometimes the server must retransmit

its reply one or more times. Since the server's service

time varies depending on the its load and processor speed,

most existing RPC implementations retransmit infre-

quently, assuming that the network rarely loses messages

and that the server will eventually respond. However, in

some networks, the probability of message loss can be

high. Extended local area networks (LAN) experience

buffer overflow at LAN bridges. Internet gateways drop

packets due to congestion by caused by stream protocols.

Aloha and slotted Aloha networks lack collision detection

and lose messages with high probability. The probability

of message loss increases with message size, and many

request-response protocols can send many kilobytes of

data, e.g. encryption key servers, authentication servers,

and and network paging servers. Modeling existing net-

works, we introduce an RPC cost function that accounts

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Calculating Timeouts for Minimum Cost RPC

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We derive expressions for remote procedure call (RPC) retransmission timeout values that minimize the
weighted sort of total elapsed time, operating system kernel costs, and network charges. Currently we
select RPC retransmission timeouts to minimize network utilization, an operating point chosen with our
networks’ low bandwidth in mind. When public utilities provided digital service becomes popular, we will
routinely make requests to servers across town and across nation and we will pay for each message that we
send. These networks may offer various grades of service, each with different loss and delay
characteristics. In such an environment, choosing the retransmission timeout and grade of service that
minimize our costs is not obvious. Our approach, illustrated with a simple RPC algorithm, can be applied
to other remote invocation mechanisms. We can incorporate the expression for the optimal retransmission
timeout that our approach generates into the communication’s software of distributed operating systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

for kernel costs, network costs, and end-to-end message

transmission delay, and minimize it as a function of the

protocol retransmission timeout.

When public utility provided networks become

popular, we can expect to pay for each message we

transmit. Perhaps the networks will offer various grades

of message reliability and message transmission delay.

Unreliable messages cost less than highly reliable mes-

sages. Slower messages cost less than faster messages.

Modeling these future networks, we minimize our RPC

cost function by simultaneously finding the optimal

retransmission timeout and grade of service to request

In Figure 1 we illustrate our RPC retransmission

policy. The requestor retransmits its RPC every t mil-

liseconds until it receives the server's reply. We denote

the probability that a message is lost by p , the probability

that it is delivered by q = 1 - p, the operating system

kernel's cost per message by Kr ~d the network's charge

per message by Mr(Y ,p), where y denotes the message's

expected transmission delay. We denote the time

between retransmissions, the retransmission timeout, by t,

the server's service time density by f(t), and the

expected service time by x.

1.1. RPC cost function

We define the total RPC cost L as the weighted

sum of the elapsed time between the requestor's initial

transmission and its first reception of the RPC's results,

the cost imposed on the operating system kernels by mes-

sages sent by both the requestor and the server, and the

-2-

Tune

.......... ·----.......... -- -- -.. --- -......

~
'

···········-!- Lost

Received

Causes an Action

l
X

j

Figure 1. Figure 1. Behavior of the RPC algorithm we

consider here.

charge that the network imposes for the transmitted mes-

sages. Denote the expected number of message sent by

n, the expected elapsed time by T, and the expected RPC

cost function by L .

L=a ·T+b ·nKr+c ·n·Mr(y,p). (1)

Notice that the weighting constants a, b , and c must

translate each component of this sum into some common

unit of cost, say milliseconds. Since we can rescale Kr

and M r (y , p) , without loss of generality, we set a , b and

c to 1.

1.2. Outline

In Section 2 we calculate optimal timeouts for

existing networks in three steps. We first calculate the

optimal timeout assuming that message transmission

delay is negligible and result messages are not lost. This

models busy servers. Busy servers may repeatedly drop

requests, but once it receives one, it never drops its

response. Next we extend the model to include lost result

messages. Finally, we add network transmission delay y .

In Section 3 we consider networks with tunable loss and

delay parameters, where slow messages cost less than fast

messages and less reliable messages cost less than more

reliable messages. We simultaneously minimize the RPC

cost function L over the retransmission timeout t and the

optimal network transmission time y and loss parameter

p to request In Section 4 we discuss how to incorporate

our results in distributed systems. We draw conclusions

in Section 5.

2. Optimal retransmission timeout

In this section we derive the optimal retransmission

timeout 'topt by evaluating the cost function and setting its

derivative with respect to the retransmission time t to

zero, given that the network does not charge for messages

sent (Mr(Y ,p) = 0).

2.1. No lost replies. No message transmission time.

Momentarily assume that the RPC's result message

is never lost Each transmission sent and lost before the

-3-

server receives the RPC request contributes kernel cost

Kr and time 't to the cost function L. Since the requestor

continues retransmitting the RPC request every 't seconds

until it receives the results, it retransmits L t /tj times dur-

ing the service time interval t . The initial request and the

one (and only) reply contribute 2 Kr.

L = .r. pic q (Kr + 't) k + 2 Kr + j f (t)[t+l.!...J Krl dt .
/c~ 0 't

Recall the expected value of a geometric series.

~ k k-1 1 4-Jq p =-.
/c=l q

We integrate and replace the first part of the integrand

with the expected service time x. We replace the

geometric series with its value pI q , and rewrite the floor

as a summation.

- (j+l)'t

L=f!_(Kr+t)+x+2Kr+KrL f jf(t)dt.
q j=l j't

We minimize the total cost L by setting its derivative with

respect to 't to zero.

dL d - (j+l)'t

- = f!_ + - Kr L J } f (I) dt = 0.
dt q dt j=l j't

We apply the chain rule and discover that derivative of

the summation telescopes.

d - (j+l)'t

dt Kr ~~ ~ } f (l) dt = - Kr ~~ j f (} 't) .

When the RPC service time is distributed exponentially,

then this is a geometric series and is easily evaluated.

- 1 - -'tix
1:Jf(jt)=-=1:Je-f'tlx= ___ e ___ _
J=l X J=l X (1-e -'t 1

")2

The optimum timeout satisfies a quadratic equation in

-'tix e .

p_ _ Kr _....;e;;__-_-c 1_:; __
- =0.

q x (1-e --c 1")2

We find the roots of this quadratic equation by employing

the quadratic formula.

e _,, = [; :~ + '] ±{ [; :~ + r-r
Since the optimal timeout must be positive, we employ

the smaller root.

Unfortunately, our precision has left us with a clumsy,

albeit exact, expression. As we are seeking something

that system programmers can exploit, we approximate L

by ignoring the floor within the integral. This

approximation's accuracy decreases as 't grows larger

thanx.

J!.. Kr
L = (Kr + 1:) + 2 Kr + x (1 + -).

q 't

We set the derivative of this expression to zero or, alter-

natively, apply the approximation In (1-x) ~-x to the

equation for 'topr above, and obtain

_/ Kr x
'topr :: q -\1 pq

This timeout is only accurate on local networks

where the transmission time is negligible and where RPC

requests are lost primarily because the RPC server is

overloaded. In the remainder of this section we include

lost responses and network transmission time to the

model. Most of the hard work is over.

2.2. No network transmission time

We now modify our cost function to account for

lost replies. Ignore message transmission time for a

moment longer.

L = ! (K, +<) + 2 K, + q l f (I) [t + l ~ j K, l dt

+p 1 f (t) l ~ j [<+ K, J dt.

-
+p L j ((1 + q) Kr + 't) (1- qzy-t qz

j=l

The server's result transmission is delivered with proba-

bility q and is lost with probability p . The first integral

accounts for latency and retransmission costs when the

result is delivered successfully. The second integral

accounts for latency and retransmission costs through the

instant when the result transmission is lost, in which case

the latency is a multiple of 't. The geometric series in q2

accounts for the kernel costs and latency that accrue after

the result transmission is lost until both a retransmission

and the reply to the retransmission are successfully

delivered. The factor of (1 + q) corresponds to the

expected number of transmissions for each retransmission

cycle. With probability 1 the requestor retransmits. With

probability q the retransmission reaches the server and the

server replies. (We assume the server holds the results of

the RPC for a long time; clearly, some form of garbage

collection can eliminate old results). We collapse the

geometric series and replace the floor with a summation.

-4-

L = p_ (K, +t)+2K, +p ((l+q)K, +t)q-2

q

.. U+l)'t

+ q X+ (K, + p 't) L J j f (t) dt .
j=l j 't

We minimize this quantity by setting its derivative to

zero.

.. U+l)'t

+ P 1: J j ! <t) dt = o.
}=1 j 't

When f(t) is exponential, we easily find the cost

functionL.

L = p_ (K, +t)+2K, +p ((l+q)K, +'t)q-2

q

-'tlz

+ q x + (K, + p 't) e ,-.
1 -'t ;x -e

However, this expression is not in quadratic form and we

can not find 'topt in closed form. Although we could

apply the Newton-Raphson technique to approximate this

expression's root, we choose instead to approximate 'topt

by ignoring the floor.

L ::: p (K, + 't) + x + 2 K, + p ((1 + q) K, + t) q-2

q

+ K, x -r-1 •

We set its derivative to zero and solve for 'topt

Let us investigate our approximation's sensitivity to

the service time distribution. In Figure 2 we plot the cost

function L and our approximation of 'topt· We plot the

-5-

cost function L for uniform, exponential, and constant

service time distributions of equal expected service time

x. We see that our approximation of 'topt is very close

indeed.

2.3. Message transmission time

We are now ready to account for message transmis-

sion time by adding to each message its expected message

transmission time y. We proceed in the familiar manner

to derive the optimal timeout 'topt that we seek.

10 20 30 40 50 60 70 80 90 100
Retransmission Timeout

Figure 2. Figure 2. Cost function versus timeout

x = 15, K, = 5, q = .8, y=(O and 10).

L = /!.1_ + q (2y +X)
q

+ P [< l I (t) l-7-j dt + 2y + ;,]

+ K, [~ + (I + q) I I (t) l2\ + t j dt

+2-q Il(t) l ~ j dt + p <~;q>]

When the server's service time is exponentially distri-

buted, we can evaluate the cost function. However, as

this does not lead to a closed form expression for 'topt , we

immediately derive an approximation for L by ignoring

the floors.

L == Pq't +q (2y +x)+p [y +x+2y + ; 2] (2)

K [
p_ (1 + q) 2 y 2 x p (1 + q) l

+r + ++ + 2
q 't 't q

We set the derivative with respect to 't to zero, replace p

by 1 - q, and solve for the optimum timeout 't.

't = - J Kr ((I + q) 2 Y + i) (3)
OP.I q -\1 (1 _ q2) •

In Figures 4 and 5 we plot the cost function and its

standard deviation for several sets of parameters. Note

that the standard deviation grows quickly when the

timeout exceeds 'topt and that our approximation for 'topt

holds for both constant and exponential message

transmission delay.

-6-

---T·--l<?-t_f-.-~'?~-f--~~~~Y..T ___ y-··-T

----~-----r:~~~:.i:-~-~~=:r.~~----1-----~-----+
1000

900

800
-+- ~=.5,)Kr=5,x=h5,j=1d.)))

----1·----r··-·t··-·t··-··t··-··j··-··j·----1·----1·-·--t
-_.,:_:.. -~---- .. ;. ... -- ~--·· -~--- .. -~---- .. ~---: .. --- .. ~

f ! ! ! ~ l ! j l !
700

:-T-lFFf.TI:-r---i--t 600

500

400 ----· --~ ---~---- · r··-r-·--r--r-·t··+
300 ----1·-··t~~---··t··-··t··-··j·----;---- i -r···t

~o;,t----r----r-----;.__ = --~-----~-----1-----r-----t

: · : : acm4s-, (y 'f100) ! !
200

100 ·r··-··r···-·t···--t·--·-J··--·J··--·i···-·i·
! ! ia~,(y+lO)! ! !

0~~~~~+-~_.--~+-~~

10 20 30 40 50 60 70 80 90 100
Retransmission Timeout

Figure 3. Figure 3. Cost function versus timeout.
x = 15, Kr = 5, q= .5, y = 10 andy = 100, service ex
ponential, transmission time constant.

100 ----r-=-:-~~r--~:~~-r--~1~~r--T----:-
: q-.$. Krr-5. X:-15 : : : .

90
-· ·r-·r·--r--r·--r--r---~--- ·-- ·---r

. ----t-----+-----t-----i---- ' ----i----- ---1-----+
l l i' i' l l

----· :----t~=r::yr:::t
80

70

60

50

40 -·--r~--- i - --r----r--r---r--r··-r---r
30 ···t·----r-----i·-----r---·-i·-----r-----i--·--t

Pcod ~ ! ! j J ~ i J

20 --··t··-··t··---r---·t-----r--·-t··-··t··--r-----1------:-
----t--yi=expntl(w): : : : : :

10;.. ·---i---·-+ -----1-----i------i ----- 1------~-----i-----+
+y~o~stdO) j j j j l l

0._~~~~~+-~-+~~~~

w w w 40 ~ 60 m w 90 100

Retransmission Timeout

Figure 4. Figure 4. Mean and standard deviation of cost
function versus timeout. x = 15, Kr = 5, q = .8, y = 10,
service exponential, transmission time constant and ex
ponential.

3. Paying for faster messages

Since public utility provided digital communication

will eventually become popular, let us investigate how

one possible feature of future networks, being able to pay

for reduced transmission delay and lower error rates,

affects our timeout calculations. Suppose the network

charges us for each message we send, charging more for

decreased transmission time and lower loss rates. We, as

network subscribers, specify the type of service we

desire, and pay a service charge based on the network

resources we consume [2]. For example, we can specify

lossy service and pay less per message, but have to

retransmit more. For our purposes, assume we can specify

the message transmission delay y, y ~ y 0 , and loss proba-

bility p , p ~ p 0, and pay a charge M r (y , p) ~ 0, decreas-

ing in both y and p, for each message we send (y 0 is the

minimum network delay and p 0 is the minimum message

loss probability). We find the optimal retransmission time

and service grade ('topt•Yopt,Popt) subject to the con-

straints 't > 0, y ~ y0 , and p ~Po that minimize our RPC

cost function.

Recall the definition of the RPC cost function,

equation (1). Assume again that the scaling factors a, b,

and c have already been included in M r (y , p) and Kr.

We approximate the RPC cost function by combining

equations (1) and (2).

L = pq< +q (2y +Z)+p [y +i"+2y + ;,]

(K M ())
[

o + q) 2 y +x 2 P (1 + 2 q) J
+ r + r y,p + + 2

't q

-7-

We employ the Kuhn-Tucker method [3] of constrained

optimization to minimize L. The Kuhn-Tucker method

optimizes L by setting its partial derivatives to zero while

maintaining all of the constraints. We make this example

concrete by considering a possible message cost

Mr (y, p) and constraint gP.

Mr(y,p)=!!:_
y

gP =p -po=O.

g., =y -yo~O.

We introduce Lagrange multiplier A., corresponding to

constraint equation g.,. The Kuhn-Tucker conditions

reduce to

j_L =0
ere

;y [L - A., g.,] = 0

't ~ 0, and y ~ 0 .

This constrained optimization problem is easily

solved since p is given and the constraint on y is linear.

We discover that the optimal pair ('Copt, Yopt) is simply the

solution to the unconstrained problem unless Yopt < y 0 , in

which case the optimal transmission time y is y0 and the

optimal retransmission timeout is 'Copt as calculated in (3)

after substituting M r (y O• p) + Kr for K r and Yopt for y .

't :: - / (Kr +Mr<Yo.P)) ((1 +q) 2yo+X)
opt q \1 (1 _ qz) ·

In Figure 5 we plot several optimal timeout and

optimal transmission delays as a function of the constant

. i

of proportionality a. When M r (y, p) is differentiable and

decreasing in y and p, we can always apply the Kuhn-

Tucker algorithm to find the channel parameters Yopt and

Popr and retransmission time 'topr that minimize L. Com-

pare the two darkest pairs of lines which only differ by

the kernel cost Kr. The darkest line has larger Kr. We

see that this pushes the retransmission time higher but lets

us pay for faster channel delay.

4. Implementation

We can take advantage of these timeout calcula-

tions in real distributed systems by incorporating them

into network code. We can cache estimates of the

expected service time x, the loss parameter p, and the

round trip message delay 2 y to various destinations. We

100
Optimal timeout 'top< and transmission time Yopt

90

80

70

60

50

40

30
' ' ' ' ' . . ' .

-~..------"-----~-----·-----~ 0 0 0 0 I 20
• • • • 0

I I 0 I 0 I

0 t 0 0 I 0

10 -~hakef:detiyyl-···--i-----+----+----i
i i i i T i i i i

0._~~--~~~--~~~--~~

100 200 300 400 500 600 700 800 900 1000
Proportionality constant alpha of M, (y ,p) = a/y

Figure 5. Figure 5. Retransmission timeout 'tap~ and

transmission delay Yopr are functions of the transmission

delay cost function M, (y , p) = aJy .

can update a destination's estimates every time we com-

plete an RPC. Where no estimates exist, we can initialize

them to some set of default values. Estimates for sites

with which we communicate frequently, nameservers,

authentication servers, page servers, will improve and

converge.

It is more difficult to exploit Section 3 's results,

finding both the network's optimal grade of service and

the optimal timeout, because we lack closed form approx-

imations. However, we can calculate these values by

solving the Kuhn-Tucker equations once and place them

in the application software or operating system. Given a

specific network cost function M r (y, p), we could con-

struct a table of the optimal t, y , and p indexed by the

remaining variables x and Kr.

4.1. Stability

Address stability issue. Since losses may occur

from buffer overflow, raising the timeout, not lowering it,

is the measure that leads to stable behaviour. However,

as congestion and losses increase, the server's estimation

of x increases as well. If the server's queue holds four

jobs, then its estimate of x increases to 5xbar0, where x0

denotes the empty queue behaviour.

When more than one service provider exists, a

related problem is choosing the timeout at which we give

up on one service provider and go on to the next. For

example, the 4.3 bsd UNIX nameserver accepts the

names of three alternative servers which it tries in round-

robbin order. We can apply our technique to calculate this

-8-

timeout

5. Conclusions

Selecting protocol timeout values taxes the intuition

of system programmers. Historically RPC timeout values

have been chosen long to minimally impact the network

load and because the programmers assumed that losses

were rare. At the minimum, our expression for the

optimal retransmission timeout (3) sheds light on the

intuitive process of selecting timeouts. We believe our

expression replaces the black art of selecting timeouts. In

the future, when we have to select and pay for the grade

of network service that we use, we will have to select

both the RPC retransmission time and the network

transmission delay and error rate that we request. We

solved this problem by adding the cost per message

M r (y, p) sent into the RPC cost function L and then

minimized L over the parameters that we are allowed to

select, the retransmission time t, the network transmission

delay y, and the network's message loss probability p.

We believe our RPC cost function reflects the

tradeoffs that protocol designers make. However, the

optimal retransmission timeout that we calculate (3) is

only as good, of course, as the parameters that drive it, the

kernel cost per message K r, the expected service time x,

the probability a message is lost p , and the round trip

message delay 2 y .

__ / Kr ((1 +q)2y +X)
topt - q -'J (1 _ qz)

-9-

One can extend our skeletal RPC algorithm to other

request-reply protocols. We can apply our techniques to

optimize the Birrel and Nelson algorithm [1] in which the

server acknowledges all retransmissions. Inherently, we

have assumed that RPCs are not the cause of network

congestion and that message loss is independent and

describable by a single parameter p . Since our algorithm

decreases t with increasing loss probability p , we add to

network congestion. This is reasonable since stream pro

tocols are the principle cause of network congestion, and,

in the future, charging for messages will reduce the

greedy stream protocol's incentive.

References

1. A. D. Birrel and B. J. Nelson, "Implementing Remote
Procedure Calls", Trans. Computer Systemr 2, 1 (Feb.
1984), 39-59.

2. D. Anderson, "A Software Architecture for Network
Communication", 8th lnternaJional Conference on
Distributed Computing Systemr, Jnne 1988, 376-383.

3. M. Avriel, Nonlinear Programming: Analysis and
Methods, Prentice Hall, Englewood Cliffs, NJ, 1976.

